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Abstract--A quantitative prediction of the thermal field and the location of the melt-crystal interface 
during growth requires a precise knowledge of the heat transfer taking place in the entire furnace. The 
problem is highly complex since it involves an accurate calculation of radiation between the different 
surfaces and conduction in the constituents. Radiative exchanges are calculated with the assumption of 
diffuse surfaces and with use of a viewed and hidden part algorithm together with a Galerkin 
discretization. The model has been extended for taking semi-transparent materials into account. The shape 
of the liquid-solid interface is a variable of the problem and is calculated as being the melting isotherm. 
Examples of germanium and gallium arsenide furnaces are analysed, showing the efficiency of the method. 

1. INTRODUCTION 

MOST SEMICONDUCTOR crystals are grown in Czo- 
chralski pullers, in which a cylindrical crystal is pulled 
from the surface of the melt. Gallium arsenide and 
indium phosphide crystals are usually grown with the 
LEC (liquid-encapsulated Czochralski) process. The 
calculation of heat transfer in such furnaces is complex 
in view of the strong coupling between diffusive, 
advective and radiative exchanges. A review of the 
various aspects affecting heat transfer in a Czochralski 
furnace may be found in ref. [1]. Over the last four 
years, a major effort has been accomplished for con- 
sidering the whole furnace as a system where the 
growth of the crystal is simulated on the basis of a 
reduced number of controllable parameters, such as 
the power input in the heater, the coolant temperature, 
the pulling rate and the diameter of the crystal. In a 
series of papers, Derby et al. [2-6] developed a sim- 
plified model of the furnace radiating towards an 
ambient temperature. They studied the dynamics of 
the growth process and its control, and considered the 
variation of the crystal radius during growth. A more 
elaborate thermal model taking into account radiative 
exchanges between the various constituents was later 
elaborated by Atherton et al. [7], but the ambient 
temperature on the outer walls was still part of the 
data. In an earlier paper, Srivastava et al. [8] had also 
used a radiative model on a reduced geometry, with 
an analytical calculation of the view factors. More 
recently, Motakef and Witt [9] and Motakef [10, 11] 
developed a thermal model which is very similar to 
that in ref. [7], except that the radius of the crystal is 
uniform. 

In these various papers, a certain degree of inde- 
terminacy is left on the distant surfaces such as the 
wall of the furnace or the bottom plate; the effect of 

including additional components in the heater, such 
as reflectors above the crucible, is not straightfo~vard. 

In the present paper, we wish to pursue the analysis 
initiated by Wouters [12]. The method has briefly 
been reviewed in ref. [13], where we described a heat 
transfer model of the furnace which is self-contained ; 
input parameters other than the coolant temperature 
and the power input - -or  the pulling rate--are not 
required, provided the complete geometry (including 
the uniform radius of the crystal) is fully charac- 
terized. Since the publication of refs. [12, 13], the 
method has been refined and several practical appli- 
cations have been published [14-17]. In what follows, 
we wish to give a complete description of the thermal 
model and the numerical method used in these papers. 

A major ingredient of the model is the calculation 
of the radiative transfer. Analytical methods were 
eliminated a priori in view of the geometrical com- 
plexity of common furnaces and the nonlinearity of 
the problem. A first numerical approach would be the 
Monte Carlo method, which lies on a statistical basis 
[18, 19]. Such a method is well adapted for solving 
complex problems, but it has not been retained in viev, 
of its high cost for a sufficient accuracy. A second 
approach is the net-radiation method ; when the latter 
is combined with zonal analysis [20-23], the surface 
of the enclosure is divided into a number of isothermal 
patches, while radiative transfer is calculated between 
every pair of such patches. First, one calculates the 
configuration (or view) factor associated with every 
pair, while taking into account the viewed and hidden 
parts of the enclosure. Matrix operations then provide 
the total-exchange areas (or the Gebhart factors) 
between the pairs; this means that successive reflec- 
tions are now taken into account. The total-exchange 
areas produce the relationships between net fluxes and 
radiative emitted fluxes, i.e. the matrix relationship 
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between net fluxes and fourth powers of temperatures 
on the enclosure. Such an approach was followed by 
Atherton et  al. [7], where circular cross-sections of 
the crucible are replaced by octagons. 

In our work, we have taken full account of the 
circular symmetry of the furnace. The temperature 
field on the enclosure is represented by means of  quad- 
ratic one-dimensional finite elements. Galerkin's 
method [24] is used for solving the radiative integral 
equation ; it leads to a high accuracy which is closely 
related to that of the numerical integration. Let us 
in particular emphasize the importance of radiative 
exchange near the tri-junction, where the crystal meets 
the melt. View factors between infinitesimal conical 
surfaces are calculated analytically by means of an 
original method which is equivalent to but differs from 
Garot  and Gendre's method [25]. A major advantage 
of our algorithm is that the full analysis is performed 
in a planar cross-section of the furnace, and is thus 
an appropriate tool for furnace design. 

A study of the LEC growth requires to take into 
account the presence of a semi-transparent oxide 
layer. While the limit cases of transparency and opac- 
ity are studied in ref. [10], we have applied the band- 
energy method [ 19], considering that the layer is trans- 
parent for some ranges of wavelengths and opaque 
for others. We will find that the transparency 
coefficient has important implications upon the tem- 
perature distribution and the thermal stresses. 

A significant problem of using semiconductors for 
high quality electronic substrates is the presence of 
dislocations. They are usually related to thermal 
stresses [26,27] generated during growth which, 
beyond a critical level, give rise to plastic defor- 
mations. Thus, a common way of estimating the den- 
sity of dislocations, at least on a qualitative basis, 
has been to calculate thermal stresses during growth. 
Analytical methods have been used by Kobayashi and 
Iwaki [28] and Jordan et  al. [29, 30], while Duseaux 
[31] used a finite element method for this purpose. In 
such studies, the thermal boundary conditions on the 
crystal are selected at the outset and take little account 
of the surrounding ambience and of the shape of the 
interface. An examination of thermal stress contours 
shows however that an accurate evaluation of such 
stresses requires in turn an accurate description of 
the temperature field. Methods based on measured 
temperatures [32] lose the predictive power which is 
desired for modifying the geometry of the furnace. An 
analysis of the thermal stresses on the basis of a global 
heat transfer analysis has been developed by Motakef 
and Witt [9] and Motakef [10, 11]. Similarly, a finite 
element prediction of thermal stresses is coupled to 
our global heat transfer calculation. For  this reason, 
our model is a powerful tool for acting on the mag- 
nitude of the temperature gradients in order to 
decrease the dislocation density (or the thermal 
stresses) [14, 16]. 

At this stage, we have not mentioned the motion of 
the melt caused by natural and forced convection. 

Although advective phenomena have been taken into 
account in our earlier publications [15, 17, 33], we 
have not included their description in the present 
paper for the sake of brevity. It should be recalled 
that the low Prandtl number characterizing metallic 
melts reduces the influence of convection on the tem- 
perature field, particularly in the case of germanium 
growth. 

Since our goal here is to present the method for 
calculating heat transfer in the furnace, the paper 
is organized along the basic steps of the algorithm. 
Having introduced definitions and basic hypotheses 
in Section 2, we present our algorithm for radiative 
enclosures in Section 3. Heat conduction is studied in 
Section 4, while the solid-liquid interface is examined 
in Section 5. In Section 6 we elaborate on the impor- 
tant topic of selecting a strategy for solving the global 
system of  non-linear equations ; in particular, we dis- 
cuss whether one should impose the power input or 
the pulling rate. Having briefly recalled the calculation 
of thermal stresses in Section 7, we analyse two exam- 
ples in Section 8, related to the growth of germanium 
and gallium arsenide crystals. 

2. BASIC HYPOTHESES AND DEFINITIONS 

The geometry of the global problem that we wish 
to solve is illustrated in Fig. 1, where the components 
of a typical Czochralski puller are shown which will 
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FIG. 1. Geometry of a typical LEC Czochralski puller and 
associate global finite element mesh. 
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serve as a basis for illustrating our method in later 
sections. We will assume at the outset that the 
geometry, is axisymmetric. It may therefore be necess- 
ary to distribute in the azimuthal direction some 
parts of the furnace which are not symmetric such as 
the wiring ofthe heater. In Fig. 1, the heater H radiates 
power towards the crucible A and the insulating wall I. 
The crucible A maintains the metal above the melting 
point ; some heat is evacuated through the pedestal E. 
The crystal C is pulled from the melt B with a release 
of latent heat of fusion at the interface, while heat is 
transferred by conduction from B to C. The surfaces 
of the melt and of the crystal radiate heat inside the 
enclosure G towards the wall F which is cooled by 
water circulation. For the case of LEC growth, the 
melt is covered by a boric oxide layer D. The transfer 
of heat through D is a combination of conduction and 
radiation, since the oxide layer is semi-transparent 
to infra-red radiation. The semi-transparent property 
will be analysed in Section 3. 

Our main interest is to calculate the shape of the 
liquid-solid interface and the temperature dis- 
tribution within the crystal at various stages of its 
groxvth. It might therefore be sufficient to limit the 
domain of our calculations to the melt B and the 
crystal C. However, the temperature distribution in 
these components depends strongly upon the bound- 
ary conditions on their outer surface, which are a 
priori unknown. An accurate calculation of the ten> 
perature field will thus require a global calculation of 
the heat transfer throughout the whole furnace, on 
the basis of its geometry and its material properties, 
and a limited number of control parameters. 

Our method is based on an idealized procedure where 
the crystal is grown with a constant radius selected at 
the outset. This would require an ideal control of 
the growth process ; we generally calculate the power 
input while the growth rate is imposed. We also 
assume that the whole furnace is in a quasi-steady 
state [4], where one does not take into account the 
growth history of the crystal. More precisely, the time 
dependence of the geometry is not taken into account ; 
however, for a fixed situation at a given time, the 
release of latent heat of fusion at the interface is pro- 
portional to the imposed growth rate. The quasi- 
steady hypothesis is valid since the time constants 
corresponding to geometrical modifications are much 
larger than the ones associated with heat transfer 
within the furnace. 

In order to develop our mathematical model, we 
wish to separately consider four types of media within 
the furnace : 

(i) radiative enclosures which connect the various 
liquid and solid constituents; 

(ii) solid domains such as the heater, the crucible, 
the pedestal and other constituents where heat is 
transferred by conduction ; 

(iii) outer thin walls cooled by external convection ; 
(iv) the crystal and the melt together with their 

interface. 

Briefly, the global method consists of separately 
analysing the heat transfer within each of these con- 
stituents and of imposing continuity of temperature 
and heat flux on their interfaces. Figure 1 shows a 
typical finite element mesh covering the whole 
furnace. Each separate object (e.g. A, B, C . . . .  ) con- 
stitutes a macro-element. The analysis will make use 
of several sorts of macro-elements which are defined 
below. 

A radiative macro-element is an enclosure bounded 
by one or more macro-elements of another type, 
where heat transfer between walls is essentially radi- 
ative (it is also possible to include convective transfer 
due to the motion of the ambient gas). Temperatures 
and heat fluxes are only evaluated on the ~atls of the 
enclosure. Since each wall of an enclosure may see the 
other walls, a radiative enclosure cannot be sub- 
divided into smaller entities. 

A two-dimensional macro-element is a liquid or solid 
component where heat transfer occurs by conduction 
(and possibly' by convection). It is alwabs allowed to 
partition a conductive (but not convective) macro- 
element into smaller entities without modir~ing the 
transfer properties of the system. 

A one-dimensional macro-element is a specific entity 
designed for components which have a low thickness 
as compared to their other dimensions. Typically, the 
walls F of the enclosure G may be well described as a 
thin shell on which a relationship exists bet~een the 
outgoing flux and the local temperature. 

Parts of the boundary of a macro-element may 
either see the outer world, or be interfaced with 
another macro-element. The set of interfaces con- 
necting macro-elements constitutes the skeleton of the 
global domain. In the following sections, we ~ill show 
that the global heat transfer calculation consists of 
reducing it to an evaluation of nodal temperatures on 
the skeleton of the furnace. The cost of the calculation 
is essentially related to the number of nodes (ound on 
the skeleton. 

We will now separately consider each type of 
macro-element while their assembly will be analysed 
in Section 6. 

3. RADIATIVE ENCLOSURES 

In this section, we shall focus on the modelling of 
radiative heat exchange, which plays a major role in 
Czochralski growth because natural emission in the 
infra-red part of the spectrum is important at the 
melting temperature of common semiconductors. We 
will follow the general theory of Siegel and Howell 
[19], although simplifications are required lbr the 
numerical simulation. Our main assumption is that 
radiation is only diffuse. This hypothesis is sat- 
isfactory even when specular reflection occurs, since 
true reflecting surfaces are generally non-smooth. 
Moreover, we shall consider that emission, absorption 
and reflection of radiating waves only occur at the 
surfaces of the bodies (and not within the bodies them- 
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selves). Further hypotheses will be introduced at a 
later stage. 

| . 0  

3.1. Radiative exchanyes in a f i xed  range o f  wavelengths o.a 
Let us first establish the integral equation governing 

radiative exchange in a given enclosure (delimiting a 
volume V) within a fixed range A = [2,, 22] of wave- 0.6 

lengths. We assume that all surfaces are opaque and 
all material properties are temperature and wave- 
length independent in this fixed range. In further sub- 0.4 

sections, we shall extend the model to more general 
situations, including the case of semi-transparent 
materials, o . :  

The radiation equation represents a balance 
between heat emission, absorption and reflection. 
Except at the absolute zero, all bodies emit energy in 0.0 
the form of electromagnetic waves. In the case of a 1¢ 
black body (or a perfect absorber), natural emission 
obeys Planck's law, which has been determined on the 
basis of thermodynamic considerations. Let ebx(T) 
denote the spectral emissive power of the black body, 
i.e. the density of total power emitted by the body 
per unit wavelength at absolute temperature T and 
wavelength 2. Planck's law is written as follows : 

2nC, 
ebb(T) = 25(ec{ar - I) (1) 

where C, = 0.595448 x l0 s W /lm 4 m - :  and C2 = 
14 388 #m K are absolute constants. Curves of eba(T) 
as a function of 2 are given in Fig. 2 for various values with 
of T. 

The total power qbA(T) emitted by the black body 
per unit area over the range A of wavelengths is 
obtained by integration of equation (1) over this 
range ; one obtains 
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FIG. 2. Spectral emissive power of a black body for several 
temperatures. 
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FIG. 3. Fractional black body emissive power in range 0 to 
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q b A ( T )  = ebb(T) d 2  
i 

= y^(T)aT '  (2) 

where cr = 5 . 6 6 9 6  x l 0  - a  W m -z K -4 is Boltzmann's 
constant and 7A is defined by the difference 

yA(T) = F ( 2 2 T ) - F ( 2 ,  T) (3) 

f~ 15c, d,t 
F(~) = n%/5(e c,/" - 1)" (4) 

The curve F(~) is given in Fig. 3. It is clear that y^(T) 
is the ratio between the powers emitted by the black 
body in the range A and in the whole spectrum ]0, oo [, 
respectively, and so lies between 0 and 1. Moreover, 
we may observe that YA depends little upon T as long 
a s  

0 .2x104pmK~AIT~<2ET~< 10~pmK. (5) 

In what follows, we shall assume that one of the fol- 
lowing situations occurs: (i) (5) holds; (ii) A is the 
whole spectrum (YA = l), (iii) the temperature T can 
be estimated everywhere on the enclosure. Thus, in all 
three cases, we assume that Ya is a known function of 
the position on the surface of the enclosure. 

Natural emission from a real body is lower than 
that from a black body. As we consider diffuse radi- 
ation and assume that material properties are tem- 
perature and frequency independent in the range A, 
the total power qeA emitted by the body per unit sur- 
face in this range is given by the expression 

qcA(x) = eA(X)qbA(T(x)) (6) 

where CA(X) is the surface emissivity at the generic 
point x on the enclosure and takes values in the range 
10, II. 

Any element of area is also permanently born- 
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barded by waves emitted (or reflected) from other 
points on the same enclosure. The incident heat flux 
q,A(X) can either penetrate the body or be reflected. 
Since we assume the surfaces to be opaque in the range 
A, the non-reflected waves are totally absorbed and 
transformed into internal energy in the body. Kirch- 
hoff's law (which is a consequence of thermo- 
dynamic equilibrium in isothermal enclosures) states 
that the absorptivity of any surface, i.e. the ratio 
between the absorbed and incident heat fluxes, must 
exactly equal the surface emissivity. Hence, the 
absorbed and reflected heat fluxes in the range A, 
q~A(X) and q~A(X), are given respectively by 

q~.,(x) = gA(x)q,A(X ) (7) 

and 

q~A(X) = (1--ZA(x))q~^(X). (8) 

AS the total outgoing heat flux (or radiosity) qoa(X) is 
the sum of the emitted and reflected fluxes at x in the 
range A. we also have 

q,,A(X) = q~A(X) +%.~(X) = ~,,(x)ya(x)aT4(x) 

+ (1--eA(x))qiA(X). (9) 

On the other hand, the total incident heat flux q~A(X) 
in the range A is the sum of the contributions of the 
outgoing fluxes qo.x(x*) from all other points on the 
enclosure. Let dS and dS* be infinitesimal areas at 
points x and x*. The fraction of the incident flux on 
dS which leaves dS* is calculated by the product 

dqia(X) = K(x, x*)qoA(X* ) dS* (10) 

where K(x, x*) is the surface view factor between x 
and x*. Lambert's cosine law for diffuse radiation 
states that, whenever dS and dS* see each other, 
K(x, x*) is given by the formula 

[(x* - x ) "  nl[(x* - x) • n*] 
K ( x , x * ) = - -  7z[(x, x ) . ( x , _ x ) ] 2  (11) 

where n and n* are the unit normals to dS and dS* 
(Fig. 4). On the other hand, when dS and dS* do not 
see each other, K(x, x*) vanishes 

K(x,x*) = O. (t2) 

From the knowledge of K(x, x*), it is easy to integrate 
equation (10) over the surface 8 V of the enclosure 

X* 

FIG. 4. Surface view factors between infinitesimal areas. 

qia(x)=ji.~e~K(x,x*)qoa(x)dS*. (13) 

Let qA(X) represent the net heat flux at x in the range 
A, assumed to be positive when the corresponding 
energy enters the enclosure. Clearly, qx(x) is the 
difference between the outgoing and incident heat 
fluxes at x 

q.,(x) = q,,A(X) --q,,~(X). (14) 

Calculating q~A(X) and qoa(X) from equations (9) and 
(14) yields 

f %A(x) = 7a(x)~rT4(x) - ~ j  qA(X) (15) 

qoA(X) = 7A(X)o'T~(x) I--gx(X) 
cA(x ) qA(x)" 

Thus, introducing equations (15) in equation (13), 
one finds that the surface temperatures T(x) and 
heat fluxes qA(X) on g / a r e  related by the integral 
relationship 

qA(x) i" K(x.x*) 1-e.x(x*) 
aA(x) .x. . , . ,  eA(x*) q~(x*)dS* 

= "/A (X)O'T4 (X) - - ~  K(x, X*)7A(X*)aT~(x *) dS*. 
d, 

(16) 

In order to obtain a manageable system of equa- 
tions, equation (16) must first be transformed for 
taking into account the axisymmetry of the furnace. 
To this end, let r, 0 and z denote the cylindrical 
coordinates of x and p(8 V) stand for the intersection 
of the enclosure surface ?V and the mid-halfplane 
0 -~ 0 (a schematic enclosure is represented in Fig. 5). 
Further, let s be the curvilinear abscissa on p(SV). 
For any x on p(SV), we rewrite equation (16) in the 
form 

qA(X) ~ I --eA(X') , 
cA(X) ~.'~.,ev~ r'Kc(x, x') ~ qA(x'/ds' 

= 7'~(x)aT4(x) -f~'~mev) r'K~(x. X')VA(X')~Ta(x ") d.~" 

(17) 

where the axisymmetric view factor K¢(x. x') is defined 
by the integral 

K~(x, x') -- 2 K(x, x*)d0* (18) 
0 

with 

Ix! = (r,O,z)ep(SV) 
(r', O, z') ep(t V) 

x (r' cos 0", r' sin 0", --') e 8 V. 

(19) 
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ipulling chamber 

x j ~ \ .  ~, 

~ p(~V) 

crystal ] 

crucible 

FIG. 5. Schematic enclosure section for an axisymmetric 
furnace (my = 10). 

Note that, throughout this section, we always rep- 
resent vectors (including position vectors) in Car- 
tesian components, as in equations (19). The cal- 
culation of Kc(x,x') from equations (18), (11) and 
(12) is very complex, since the viewed and hidden 
parts of  the enclosure must be taken into account. 
The complete procedure is described in the next 
subsection. 

3.2. Axisymmetric calculation of the shape factor in 
the enclosure 

We will assume that the enclosure boundary O V is 
generated by the rotation around the z-axis of my 
rectilinear sides Sj forming the enclosure section 
p(OV) (Fig. 5). Each side is delimited by the edges x; 
and x j+ ~, with 

x; = (Q, 0, z j). (20) 

For  any pair (x,x ')  belonging to the section of  the 
enclosure, we need to calculate the axisymmetric view 
factor Kc(x, x'), as defined by equations (18) and (19). 
For convenience, we shall assume that, for a fixed pair 
(x, x'), x* is a current point of  azimuthal coordinate 
0* related to x" by equations (19). Moreover, n and n" 
will denote the unit normals to the enclosure at points 
x and x', with 

{nn = (c°s ~b, 0, sin tk) 
(cos ~b', 0, sin ~b'). (21) 

The unit normal n* at the current point x* is thus 
given (in Cartesian components) by 

n* = (cos ~p' cos 0", cos ~b' sin 0", sin qV). (22) 

Whenever x and x* see each other, the view factor 
K(x, x*) does not vanish and is given by equation 
(11). Introducing equations (19), (21) and (22) in 
equation (11), we can express the dependence of  
K(x, x*) with respect to 0". We thus rewrite K(x, x*) 
in the form of a function/((0") 

K(x,x*) = K(0*) (a'+b'cosO*)(a"+b"cosO*) 
= (a + b cos 0") 2 

(23) 

where a, b, a', b', a" and b" only depend on r, z, r', 
z', q~ and ~b' (which are fixed) but not on 0". These 
coefficients will not be developed in detail. Integrating 
equation (23) with respect to 0* yields a primitive 
function I(0) of/((0")  

1(0) = 0") dO* 

a - b  ) 
= A O + B t a n - ' ( N / ( - ~ ) t a n O / 2  

sin 0 
+ C a + b cos~ (24) 

where coefficients A, B and C are suitable functions 
of a, b, a', b', a" and b" [12]. 

Consider now the integral (18). Let O denote the 
range of values of 0* for which K(x,x*) does not 
vanish. In order to calculate the axisymmetric view 
factor Kc(x,x') we only need to characterize ® as a 
set of lv intervals ]0mi, 0Mi[ 

I, 
® = [_) 10m,, OM,[, 0 <~ Ore, < OM, <~ ~ (25) 

i=1 

since equations (18), (23) and (24) then provide the 
expected result 

/v 

Kc(x,x') = 2 ~ (I(OM3--I(OJ). (26) 
i =  I 

It is clear that ® depends on the viewed and hidden 
parts of the enclosure. We will therefore analyse this 
last problem in detail. 

Generally, we thus wish to determine whether any 
given line x*x is intercepted or not by the enclosure 
boundary. To this end, we define the circular pro- 
jection p(y) of any point y of the line x*x as being the 
point on the mid-halfplane 0 = 0 having the same 
radial and axial coordinates as y. It is easy to prove 
that any projected line p(x*x), i.e. the set of circular 
projections of the points forming the line x 'x ,  is a 
segment of a hyperbola (Figs. 6 and 7). We may 
consider a straight line which is rigidly linked to the 
axis of symmetry and which is initially identical to 
x ' x ;  letting this segment rotate around the axis of 
symmetry will generate a one sheet hyperboloid which 
intersects the mid-halfplane 0 = 0 through a hyper- 
bola passing through x and x' = p(x*). In particular, 
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x~ 

FIG. 6. Projected lines passing through x' and x for a simply 
connected enclosure section (l~ = 1). The family is indexed 

by the azimuthal coordinate 0* of x*, with x" = p(x*). 

the line x 'x  obviously forms its own projection. More- 
over, the line ~'x,  where .~' is the symmetric of x' 
with respect to the z-axis, as defined (in Cartesian 
components) by 

~ ' =  ( - r ' , 0 ,  z') (27) 

is projected on the pair of segments x'x~ and x~x, x~ 
being the intersection of ~ 'x with the z-axis 

r'z+rz"~ 
x , =  0,0, ~ ) .  (28) 

Hence, letting 0* (and thus x*) vary in equations (19), 
the set of projected lines p(x*x) will form a bundle of 
hyperbolas passing through x and x" and contained 
in the triangle (x, x', x~). The angle 0* varies between 
0 (if x* = x') and 7r (if x* = ~') and will be considered 
as the parameter of this set. 

Besides the fact that they provide a tool for under- 
standing radiative exchange in axisymmetrie furnaces, 
the importance of projected lines lies in the following 
observation: for any line x ' x ,  interception occurs it, 
and only if, the projected line p(x*x) crosses the 
enclosure section p(C V). Equivalently, a line x*x is 
not intercepted if, and only if, its projection p(x*x) 
does not cross any side S~ ofp(C V). This property will 
allow us to calculate the axisymmetric vie~ factor 
K~(x, x'). For any side Sj ofp(~V) (Fig. ~). we define 
the interval [0m,, O~j] as the range of values of the 
azimuthal coordinate 0* of x* such that the projected 
line p(x*x) is intercepted by Sj 

0* ~ It)',,,.. J~j] ~ K(x, x*) = 0. (29) 

Note that these intervals may be empty and may also 
overlap. The range O of values for which K(x,x*) 
does not vanish is thus given by 

Z ;  Z 

x, 

FIG. 7. Same legend as in Fig. 6 for a multi-connected FIG. 8. Interception of a family of projected lines by a side 
enclosure section (Iv = 2). (Sz) of the enclosure section. 
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m~ 
® = ]0,,~[,, U [0m. 0MA. (30) 

j= I 

Since knowledge of® provides K~(x, x') from equa- 
tions (26) and (25), it is clear that our final problem 
lies in determining the intervals [Ore j, ~M/]. These can 
easily be calculated by applying the theorem which 
follows. 

Theorem. Let Sj be any side of  the enclosure section 
p(O V), with extremities xj and x j+ ~ given by equation 
(20). Let also x be a fixed point on p(O V) and x* be, 
on the enclosure c3 V, a point of unknown azimuthal 
coordinate 0* and fixed circular projection x' (as given 
by equations (19)). Two cases are considered (Fig. 8) : 

(i) if the projected line p(x*x) passes through x j, 
then 0* can be obtained by solving the equation 

_ - - r ' ( z  - - Z j )  . (31) COS 0* r2(z ' --z)Z--r 'Z(zJ--z)2 , , 2 
2rr ' ( z j - - z ) ( z ' - - z j )  

(ii) if p(x*x) is tangent to Sy, then 0* can be 
obtained by solving the system 

f 0* = 0 + 0 '  COS 0 = z(r y+ t -- r /) + (r jz/+ , -- r j+ t z/) 
r(zj+ , - z / )  (32) 

cos0' = z'(r/+ t - r j ) + ( r / z / + l - r j +  ~zj) 
r'(zj+, - z j) 

When they occur, indeterminacies must be removed 
by application of L'Hospital's rule. In both cases, the 
searched projected line exists if, and only if, equations 
(31) or (32) have a real solution. Moreover, in the 
second case, the coordinates of the contact point xc, 
when it exists, are given by the formulae 

rr' sin (0 + 0') 
rc = r sin 0+r ' s in  0' (33) 

zr' sin O' + z'r sin 0 
zc = r sin O + r' sin O' " 

The proof of this theorem is solely based on geo- 
metrical considerations and will be omitted. 

Let us now return to the calculation of the intervals 
[Omj, OMj]" The previous discussion shows that Omj and 
/~Mj must be chosen as the lowest and highest value of 
0", respectively, between the following: 

(i) 0* = 0 or (and) 0* = n, if S/intersects one or 
both of the degenerate projected lines x 'x  and 
X'X a k.) XaX ; 

(ii) the values of 0* obtained by applying the pre- 
vious theorem (first case) to x/or  (and) x j+ t, if one or 
both of these are located inside the triangle (x, xa, x') ; 

(iii) the value of 0* obtained by applying the pre- 
vious theorem (second case), if the contact point xc is 
located between xj and x j+ ~, and inside the triangle 
(x, x~, x'). 

3.3. Discretization o f  the radiative integral equation 
Any radiating enclosure of the furnace is discretized 

by means of a set of nv one-dimensional finite 
elements. The approximation of  temperatures and 
heat fluxes is everywhere continuous on the enclosure 
section p(~ V), except at its edges (where analytical 
heat fluxes are normally discontinuous). Using quad- 
ratic shape functions, we write in equations (17) (for 
wavelengths in the range A) 

qa(x) = ~ qAAki(X) (34) 

r ' (x)  Y~ rN~,(x). 
i 

We thus approximate 

Ti0~(x) by ~ T¢0~(x). 
i 

Numerical experiments have shown the validity of 
such an approximation which considerably simplifies 
our calculations. 

We discretize the integral equation (17) on the basis 
of a Galerkin formulation. This method has been 
preferred to a procedure of nodal collocation because, 
in the latter case, important numerical problems arise 
from the calculation of the axisymmetric view factor 
Kc(x, x') at the edges of  p(0 V). Thus, discrete equa- 
tions are obtained by multiplying both sides of equa- 
tion (17) by (r0i(x) ds) and integrating the result over 
p(OV) 

r 1 
~y [ fr(Ov)~A--~ Oi(X)~O/(X) dS 

--~(ov) rOi(x)~(ov) r 'K~(x 'x ' ) l -SA(x '~)  eA (X') 

x Cj(x') ds' dSlqAj 

x 0Ax') ds' d s l a r  ]. (35) 

After suitable matrix operations, the system (35) 
may then be written in the form 

qA = _FA T4 (36) 

where qa and T 4 respectively denote the column vec- 
tors of nodal heat fluxes (in the range A) and fourth 
power of temperatures, and _FA is now a known matrix. 
It is clear that either A extends over the whole spec- 
trum ]0, ~[ ,  and qA(X) is the total heat flux q(x) enter- 
ing the enclosure, or several ranges of wavelengths 
Aj,A2 . . . .  must be considered. In the former case, 
dropping the index A in equation (36), we write 
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q = _FT ~. (37) 

In the latter case, we have 

q = q& +RA:+ "'" 

= (FA, +£x_,+ ' - ' )T 4 (38)  

and thus the total heat flux depends on the fourth 
power of temperature as before. Equation (37) is the 
general discretized relationship governing radiative 
exchange in an enclosure. The case of semi-trans- 
parent materials also reduces to this form and will be 
investigated in the next subsection. 

Numerical integration of equation (35) with respect 
to ds is performed with a three node Gaussian quad- 
rature on every element, while 20 nodes are used for 
the integration with respect to ds'. This choice is 
justified by the steep variations of K¢(x, x') observed 
in the vicinity of the edges of p(8 V). However, even 
with such an accurate method, poor results have been 
obtained in some circumstances. It is possible to check 
the accuracy of the integration with the help of the 
identity 

r'K~(x,x')ds'= 1. (39) 
(or) 

In the worst cases, the left-hand side was equal to 
0.3.-. 0.2. We have found that the origin of this prob- 
lem lies in the fact that the axisymmetric view factor 
is not a regular function, whereas this is required for 
applying Gaussian quadrature. We have therefore 
improved the algorithm in the following way : as equa- 
tion (35) is integrated with respect to both ds and ds', 
the integration with respect to ds' must be performed 
for any given integration node x (recall that three such 
nodes are located on any element). For any fixed x, 
we divide the enclosure section p(c3 V) at any point X{l), 
x~2) . . . .  where K¢(x, x') is a discontinuous function of 
s', or has a discontinuous derivative with an infinite 
slope on one or both sides of the discontinuity. For 
any element where such a division point is located, a 
20 node Gaussian integration (with respect to ds') 
is then performed separately on both parts of the 
dement. 

It is possible to prove that K~(x,x') is not regular 
in x' (in the previous sense) whenever one of the 
degenerate lines x 'x (0" = 0) or x'x~ to x~x (0'  = ~) 
passes through one of the edges of the enclosure 
section. These cases can be easily detected (Fig. 9). 
On this basis, the improved algorithm can provide 
accurate results as long as the identity (39) is used 
to check the validity of the mesh of the enclosure: 
generally, when two elements are adjacent to a re- 
entrant edge of p(g V), their respective sizes must be 
of the same order of magnitude. 

We conclude this subsection by noting that Galer- 
kin's method is globally conservative, which means 
that the total heat flux balance would vanish on the 
enclosure if integrations were performed exactly. As 
a matter of fact, the identity 

i 
z 

FIG. 9. Degenerate projected lines passing through one of 
the edges of the enclosure section p((V). 

0,(x) = 1 (40) 

can be introduced in equation (35) through the sum 
of the latter equations (which are indexed by i). 
Reversing the order of integrations, taking into 
account the symmetry of the kernel Kc(x,x'), and 
using the identity (39), one can then obtain 

or equivalently, using equations (34) 

f v  qA(x*) dS* = 0. (42) 

3.4. Semi-transparent materials 
The boric oxide layer used in the Czochzalski 

growth of gallium arsenide for avoiding arsenic evap- 
oration is not opaque and thus one of the hypotheses 
specified in the first subsection does not hold. In a 
semi-transparent medium, absorption does not take 
place solely at the surface of the body. Energy is partly 
transmitted through the body, and also absorbed and 
emitted within the body itself. 

Let us consider a monochromatic ray of wavelength 
2, with an initial intensity I °, which crosses (without 
reflection) a material of thickness h. It is attenuated 
by absorption and dispersion. Neglecting the latter. 
Bouguer's law gives a relationship between the out- 
going intensity I~ and the absorption coefficient a~ 

I~ = I ° exp (-a~h). (43) 

The penetration depth L~ is defined as 

1 
L~. = - - .  (44) 

a2 
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10. Application of the band-energy method for calculating heat exchange in a semi-transparent 
material. 

Comparing this depth with the thickness h of the 
material, one obtains the spectral optical thickness zz 

Lx 
r~ = -ft.  (45) 

When za is large compared to one, the material is 
transparent for the wavelength 2; when zx is small 
compared to one, the material is opaque for the wave- 
length 2. Our model assumes that the ranges of wave- 
lengths for which r~ is of the same order as one are 
negligible; using the band-energy method, we thus 
consider that the boric oxide layer is transparent for 
some ranges of wavelengths (zx > 1) and opaque for 
others (zz < 1). 

On this basis, it is easy to calculate radiative heat 
exchange in a semi-transparent medium. Let us con- 
sider a simplified example, represented in Fig. 10, 
where we have a semi-transparent layer. We define 
two different enclosures, where radiative exchanges 
take place with different wavelengths. Enclosure I cor- 
responds to waves (in the range A0 for which the 
layer is transparent, while enclosure II corresponds to 
waves (in the range A_,) for which it is opaque. Within 
each enclosure, radiative exchange is governed by the 
integral equation (17), which is approximated by 
equation (36). We separate the boundaries of the 
domain into three groups, denoted by (1), (2), (3) 
(see Fig. 10): boundaries (3) are common to both 
enclosures, while boundaries (1) and (2) belong to 
enclosures I and II only. The total radiating heat flux 
q(x) is thus given by 

q(x) = qA,(X) on (1) 

q(x) = qA.,(x) on (2) (46) 

q(x) = qA.(X)+qA2(X) on (3). 

It is therefore possible to obtain a general law of  the 
form of equation (37) over the whole boundary by 
superposing (as in equation (38)) the contributions 
of each enclosure. The resulting enclosure may be 
considered as a single radiative macro-element. 

4. TREATMENT OF TWO-  A N D  ONE- 
D I M E N S I O N A L  MACRO-ELEMENTS 

In this section, we wish to study macro-elements 
where heat is transferred by conduction, such as the 

heater and the crucible, with the exception of the melt 
and the crystal which will be considered separately in 
Section 5. In such macro-elements, the temperature 
field is governed by the equation 

V. [k(x)VT(x)] +r (x)  = 0 (47) 

where k is the thermal conductivity which may depend 
upon the position x and r is a heat source per unit 
volume which will in general depend upon x. For 
simplicity, we assume that k is temperature inde- 
pendent in order to preserve the linearity of the 
system. We will first discuss the case of two-dimen- 
sional macro-elements. 

The macro-element is covered by a mesh of finite 
elements which in the present paper are six-node tri- 
angles or nine-node quadrilaterals. The approximate 
temperature field is represented by the sum 

= ~ T, dp, (48) 
i 

where the T/s are nodal temperatures forming a vector 
T and the ~b/s are the corresponding global shape 
functions. Let [2 be the axisymmetric domain cor- 
responding to the macro-element; applying Galerkin's 
method for discretizing equation (47), one obtains 

ndp,[V' (kVT)+r]df2  = 0 (49) 

or, with an integration by parts 

;nk (Vq~ , 'VT)d f2=fndp , rd f~ - I zdp ,qd lE  (50) 

where y~ is the boundary of [2 and q is the outgoing 
heat flux, as given by 

q = - k V T ' n  (51) 

n being the outer normal on lE. The boundary lE is the 
union of two parts, E ÷ and IE o (Fig. I1) ; lE+ belongs 
to the skeleton of the furnace defined in Section 2, 
while lE0 is the part of the outer boundary where the 
temperature is fixed or is related to the heat flux den- 
sity q by a law such as 

q = h ( T -  To) (52) 
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~q~ 

.i 
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FIG. l I. Boundary partition for the calculation of heat trans- 
fer in a conductive macro-element. 

where h is a convect ion coefficient (W m -2 K ') and  
To is the coolant  temperature .  

Let T + denote  the vector of nodal  temperatures  on 
v*  and let T* denote  the vector of  all o ther  nodal  
temperatures  associated with the macro-e lement ;  we 
~r i te  

T = [T*,T+I . (53) 

It is then easy to rewrite equa t ion  (50) in the following 
form:  

M * T * + N T  + = E*(W)  

N T T * + M + T  + = E + ( W ) - Q  + (54) 

where the following symbols have been in t roduced : 

E*(W)={ fndp , . rd~+£odp , .hTodZ  } 

The superscripts  * and  ~- refer to the par t i t ion  of  nodal  
temperatures ,  as defined in equa t ion  (53). The symbol 
W in equat ions  (54) represents the total  power  input  
in the macro-e lement  which, at  this stage, may be 
unknown.  

In order  to link at  a later  stage the two-dimensional  
macro-e lement  with the adjacent  radiat ive enclosures 

or with any other  macro-element,  we need a rep- 
resenta t ion of  the heat  flux density q along 5"-. The 

latter is assumed to be 

q = Z q,~b, (56) 
i 

in terms of  nodal  flux densities and shape functions. 
The n u m b e r  of  nodal  flux densities a long 2;* may be 
larger than  the n u m b e r  of  nodal  temperatures.  Indeed, 
if Z + has corners,  we will associate two nodal heat  
flux densities at these corners,  one for each adjacent  
section of  the skeleton (Fig. 12): we will show in 
Section 6 how to handle  such multiple values in the 
global calculat ion on the skeleton. Let q÷ denote  the 
vector of  nodal  heat flux densities on Z* " its dimen- 
sion may thus be larger than  that  of  T*.  Combin ing  
equat ion  (56) and the sixth equat ion (55), one obta ins  
a relat ionship of  the form 

Q+ = B+R* (57) 

which is in t roduced in equat ion (54). 
At  this stage, it is possible to perform a static con- 

densation of the macro-element  or, in other  ~ ords, to 
eliminate T* from the system (54). Formall3.  if one 
defines the matr ix  

A + = M + - N T M  *- IN (58) 

and  the vector 

C + ( W )  = E + ( W ) - N T M  *- 'E*(~t ' )  (59) 

one obta ins  the system 

A _ + T + + B + q  * = C * ( W ) .  (60) 

Such a static condensa t ion  is easy to perform when 
the frontal  e l iminat ion method  is used. We have thus 
shown that  it is possible to reduce a heat  conduct ing 
macro-e lement  to a linear relat ionship between the 
nodal  temperatures  and  the nodal  heat  fluxes on that  
par t  of  its bounda ry  which belongs to the skeleton. 
The system will be closed when the various macro-  
elements are connected by means of  the radiative 

enclosures. 
We have seen in Section 2 that,  for some parts of 

the furnace, it is interesting to use one-dimensional  

~ q ~  

T1 = T.~ "< 

j 
(1) 

FIG. 12. Nodal flux densities and temperatures at the corners 
of the boundary. 
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FIG. 13. Example of a one-dimensional macro-element on 
the upper dome of a Czochralski furnace. 

macro-elements. An example is given in Fig. 13 : the 
upper radiative enclosure is adjacent to a thin shell 
(representing the dome) which is part of the skeleton. 
The loss of heat along the outer side of  such a macro- 
element is again given by a relationship of the type 
of  equation (52); since the macro-element does not 
accumulate heat, we may thus write 

q+ +h(T +-To)  = 0 (61) 

where q+ denotes the heat flux density towards the 
skeleton. Using Galerkin's method with a rep- 
resentation similar to equations (48) and (56), it is 
easy to obtain an equation of the form 

+ + + + A X + B  q = 0  (62) 

for the one-dimensional macro-element. 
Let us close this section by mentioning a particular 

use of one-dimensional macro-elements which is 
found useful for dividing a radiative enclosure in two 
entities with negligible interaction between them; an 
example is given in Fig. 14. Two adjacent one-dimen- 
sional macro-elements are then used, with the con- 
straint that nodal temperatures at adjacent nodes are 
identical while the sum of the corresponding nodal 
heat flux densities vanishes. 

\ 

H 
FxG. 14. Use of twin one-dimensional macro-element for 

subdividing a radiative enclosure in two parts. 

5. THE CRYSTAL-MELT MACRO-ELEMENT 

In this section, we wish to study the domain formed 
by the crystal and the melt. It will be found important 
to associate these two components within a single 
macro-element, because they are separated by the 
liquid-solid interface which is a priori unknown. The 
interface originates at the point of intersection of the 
solid, liquid and gas (or oxide in LEC growth) 
domains, or tri-junction, where the temperature must 
be equal to the melting temperature of the crystal. 

Locating the interface is more difficult with the 
Czochralski growth (see, e.g. ref. [34]) than with the 
Bridgman process (see, e.g. ref. [35]). In the first case, 
an appropriate combination of pulling rate and power 
input must be calculated in order to grow a crystal 
with a constant predefined radius; we will show that 
the optimal technique consists of  imposing the crystal 
diameter and the growth rate, and of getting the heater 
input power as a result. In the second case, the inter- 
face is simply defined by the melting isotherm, and 
the tri-junction is thus an additional degree of free- 
dom; this means that the pulling rate and the input 
power may be imposed, while the interface location 
results from the calculation. 

5.1. Basic equations 
A cross-section of a schematic crystal-melt macro- 

element is shown in Fig. 15. The axisymmetric domain 
fl is the union of a solid region Qs and a liquid region 
f~L, separated by an interface F. Our mathematical 
model relies on a set of hypotheses which we repeat 
for the sake of clarity : 

(i) the quasi-steady state hypothesis allows us to 
neglect the partial time derivatives in the governing 
equations ; 

(ii) the length and the radius of the crystal are 
imposed but the location of the interface is unknown ; 

(iii) the shape of the free surface of the melt is 
imposed at the outset of the global calculation; in 
particular, the shape of the meniscus linking the crys- 
tal to the surface of the melt is calculated separately 
(see Section 5.4) ; 

(iv) additionally, we will neglect the change of den- 
sity from the liquid to the solid domain. 

When the motion of  the melt is taken into account, 
heat transfer in the liquid domain is governed by the 
following equation: 

pcv. V T -  V. (kLVT) = 0 (63) 

where v is the velocity field in the melt, p the density, 
c the heat capacity and kL the thermal conductivity. 
In the solid domain, we have 

V" (ksVT) = 0 (64) 

where ks is the thermal conductivity in the crystal. In 
view of the low growth rate of the crystal, vertical heat 
convection can be neglected by comparison with the 
diffusive term. 
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FIG. 15. Cross-section of the crystal-melt macro-element. 

O(~L 

In order to evaluate the release of latent heat of 
fusion along the interface F, let us denote by v°(s) 
the normal growth velocity of the crystal along the 
interface as a function of an arc length s, with respect 
to a frame attached to the seed; thus, t,, is positive 
during growth. The amount of solidification per unit 
time and area along F is the product pc., and the 
corresponding release of heat is given by 

Wr(s) = pAHfv,(s) (65) 

where AHf is the specific latent heat of fusion of the 
crystal. Under quasi-steady assumption, the normal 
velocity t'° is related to the pulling rate vp~, of the 
crystal by the relationship 

t!. ( s )  = - t 'p.lns "e:  ( 6 6 )  

where e. is a unit vector pointing upwards and ns is 
the outer unit normal to ~s along F. 

Denoting by qc and qs the local outgoing heat flux 
densities along F, we require that the energy balance 
be preserved along the interface and thus 

Wr(s) + qc (s) + qs(s) = 0. (67) 

If one neglects supercooling, the location of the 
interface itself is found through its identification with 
the melting point isotherm, i.e. 

T(s) = Tin. along F. (68) 

5.2. Spatial discretization 
Since the location of F is a priori unknown, the 

discretized form of the basic equations must be estab- 
lished on a deformable finite element mesh which fol- 
lows the evolving form of the melting isotherm 
throughout the iterations. This method was first intro- 
duced for solidification problems by Ettourney and 
Brown [36]. Figure 16 shows a typical crystal-melt 
macro-element, where the shape of the meniscus has 
been calculated at the outset and where the location 
of the tri-junction is imposed. As an initial guess, one 
assumes that the interface is flat. The domains Os and 
f~c are then covered by an array of quadrilateral nine- 
node Lagrangian elements. These nodes are supported 
by a set of vertical lines. Below the free surface of the 

melt, the altitude of the nodes is fixed during the 
iterations ; on the contrary, the altitude of the nodes 
below the interface and within the crystal will vary 
with the position of the interface, in order to maintain 
geometrically' well-behaved finite elements through- 
out the iterations. The various techniques for man- 
aging moving meshes automatically have been 
reviewed in ref. [37]. 

Let z, denote the altitude of a node i on the interface. 
The location of the interface is then fully identified by 
a vector z containing the z,'s of all the nodes of F. Let 
k denote a node lying in the melt below node i: its 
altitude z~, will then be given by 

zk, = Ck,Zi (69) 

where c~i is a proportionality factor which is imposed 
at the outset. The same rule is used for locating the 
nodes in the crystal. 

The concept of deformable mesh has important 
implications on the finite element discretization of the 
temperature field, which is now represented, in f2~ as 
well as ~s. by a sum of the form 

;F = ~ T,0,(z) (70) 
i 

where we note that the shape functions depend upon 
the location of F through the position of the nodes. 

Applying Galerkin's method as we did in Section 4 
to the balance equations (63) and (64). one easily 
obtains 

fn,~n kVOi'VTd~+ fn ~# "VTdgz 

+ f cb,qdZ= ~ ~,~Tdr (71) 

since, from equation (67), we have 

frO~(qL +qs) dF = - frO~WrdF" (72) 

On the outer boundary Z of fL the heat flux density 
has a representation similar to equation (56) while. 
along F. the nodal temperatures must satisfy equation 
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FIG. 16. Typical moving mesh for the crystal-melt macro-element, 

(68). In what follows, we will not take convective 
terms into account;  their impact will be discussed in 
a later paper (see also refs. [15, 17]). 

We will now use the same decomposition as in 
Section 4 and write for the crystal-melt macro- 
element 

T = [T*, T ÷] (73) 

where T* is the vector of internal nodes of the macro- 
element and T+ is the vector of  nodal temperatures 
on its boundary.  It is then easy to rewrite equation 
(71) as follows: 

MM*(z)T* + N ( z ) T  + --- E*(z, vpu,) 

_NT(z)T*+MM+(z)T++B+q + - E+(z, vput) (74) 

where M*,  M ÷, N, B + and q+ are defined as in equa- 
tions (55) and (57), and where 

We observe that the matrices M*, M + and N depend 
upon the location z of the interface while E* and E + 
also depend upon the pulling rate. For  a given value 
of z and Vpu~, it is again easy to perform a static con- 
densation and obtain 

A A_+(z)T + + B + q  ÷ = C + (z, vp~) (76) 

where A+(z) is defined as in equation (58) while we 
have 

C+(z, vpu,) = E÷(z, Vput ) -NrM * -  tE*(z, vpul). (77) 

The vector z is unknown at the outset;  the cor- 
responding system of  equations is 

T r = Tt (78) 

where T r is the vector of nodal temperatures along F, 
and T t is a vector with all components equal to the 
nodal temperature at the tri-junction. 

5.3. Local  iterative scheme 

We will show in Section 6 how the calculation of 
the temperature field and the z vector within the crys- 
tal-melt  macro-element can be decoupled from the 
calculations on the rest of  the furnace. Let us assume 
that either the temperature or the heat flux is specified 
at each node of the boundary of the macro-element. 
The non-linear system of equations (74) and (78) is 
then solved by means of Newton-Raphson ' s  method. 
Let T*, T ÷, q+ and z denote the set of  unknowns after 
a given iteration ; the corrections b'l'*, fT  + and fz are 
then obtained through the solution of 

M* fT* + NfT+  + f z .  [V:M*T* + V:NT + - V:E*] 

= E * - M * T * _ N T  + 

NTd-F * +_MM + fiT + + fz-  [V:NTT + - V:E +] 

= - B + q + - N T T * - M M ÷ T +  + E *  

fT  r = 0. (79) 

The iterative procedure is interrupted once the mag- 
nitude of the right-hand sides in equations (79) lies 
below a pre-assigned criterion. 

In developing equations (79), we have assumed that 
the pulling rate Vpu, was known. In Section 6, we will 
discuss an algorithm where Vpu~ is unknown ; it is then 
necessary to add to both left-hand sides of equations 
(79) a term of the form : 

(i)  - &'~,~l dE* /dep~ l ,  
(ii) - frpul dE+/c~v,~l, 

respectively, while the equation corresponding to the 
new unknown vput states that the tri-junction is at the 
melting temperature 
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1 

F~G. 17. Fixed wetting angle q~ between the vertical wall of 
the crystal and the surface of the melt. 

r, = gin. (80) 

5.4. Calculation o f  the meniscus shape 
Before closing this section, it should be recalled 

that, for an accurate calculation of  the melting point 
isotherm and of  the heat transfer near the tri-junction, 
it is necessary to know the shape of  the meniscus 
which links the edge of  the crystal and the upper 
surface of the melt. 

An important  parameter for calculating the men- 
iscus shape is the angle q5 shown in Fig. 17 between 
the vertical surface of  the crystal and the surface of  
the melt. We assume that this wetting angle q5 is a 
fixed material property. The latter has been postulated 
by Bardsley et al. [38] (through arguments of  ther- 
modynamic equilibrium) and has been verified exper- 
imentally by Surek and Chalmers [39] for silicon over 
a wide range of  growth rates. For  the case of  a crystal 
obtained by the LEC method, one should also con- 
sider a second meniscus at the boundary between the 
crystal and the upper surface of  the boric oxide layer. 
For this second meniscus, we also assume that the 
angle of  contact can be imposed. 

The locations of  the melt and encapsulant menisci 
are governed by the Young-Laplace  equation expres- 
sing a force balance between surface tension and grav- 
ity [40]. The equation is solved at the outset by a 
decoupled finite element scheme; the shapes of  the 
menisci are left unaffected during the global iterative 
procedure. 

6. GLOBAL S O L U T I O N  

We have shown in earlier sections that, for every 
kind of  macro-element, it is possible to obtain a system 
of algebraic equations connecting nodal temperatures 
and heat fluxes along the skeleton. To summarize, let 
us assume that the puller may be associated with n~ 
radiative enclosures. For  each of these, we obtained 
in Section 3 a system of  the form 

q(k) = _F(k~T~-)4, 1 ~< k ~ n, (81) 

where the full matrix F (~) connects the nodal heat 
fluxes to the fourth power of  the nodal temperatures. 
Let us also consider n¢ conductive macro-elements, 
including the heater as well as the crystal-melt  macro- 

element. For  each of  these, we found in Sections 4 and 
5 a relationship of  the form 

d(J '(z)T'J '+B';~R ';) = C(J)(z, t'puk, W), 1 ~< j <  n~ 

(82) 

where again T (j) and q(J) are the nodal temperatures 
and heat fluxes on the skeleton part of  the boundary 
of the domain. The dependence of  A u~ and C('~ upon 
z and t'p,,~ only occurs for the crystal-inch macro- 
element, while W only appears in the macro- 
element(s) where heat is being dissipated. We note 
that A (j) has a block structure while B {/~ has a band 
structure. 

Equations (78), which correspond to the unknowns 
characterizing the position of  the interface, must also 
be considered. Moreover,  since we have assumed that 
the radius of  the crystal is fixed at the outset, the 
pulling rate t'pu I and the input power W are dependent 
variables ; however, one or the other is assigned as part 
of the data for a global simulation. The equation corre- 
sponding to the remaining unknown is equation (80). 

The system (81). (82). (78) and (80) is highl 5 nonlinear. 
in view of the fourth power o f T  in equation (82) and 
the dependence of  the various matrix operators upon 
z. The need for an iterative procedure is obvious. 
Decoupling is also necessary in view of the size of  the 
system. On the basis of  T (') in equation (82), it is 
possible to recover the temperature field in any macro- 
element by means of  an equation of  the form 

_,~I*~J)(z)T*'J) + N'~)(z)T ( ' _  = __E*IJ'(z', ~" po,, W). (83) 

6.1. Skeleton equations 
Before describing the global iterative algorithm, let 

us asume that z, Cp~ and W are k n o w r n ,  and let us 
show how it is then possible to calculate the tem- 
perature field on the skeleton, without using equations 
(78) and (80). The term B°)q (j~ in equation (82) stands 
for generalized nodal heat fluxes QU, along the bound- 
ary of  the macro-element (see equation (57)). Along 
the common border of  two conductive macro- 
elements, such nodal heat fluxes are of  opposite sign. 
They can thus be easily eliminated from the global 
system simply by adding the appropriate equations of  
the form of equation (82) along the common borders. 
It is thus possible to obtain a system of  the form 

A(z)T'+_Bq' = C(z, t, pu,, W) (84) 

which relates the nodal temperatures T s and the radi- 
ative heat fluxes q' along the skeleton. We note that 
the matrix B is rectangular since the nodal heat fluxes 
have been eliminated along the common border of  
adjacent conductive macro-elements. In the same way, 
we write equation (81) as follows: 

qr  = _ETa4 (85) 

where F is also rectangular. 
At geometrical corners of  radiative enclosures, we 

had been led to identify a different nodal heat flux on 
both sides of  the corner, while the associated tern- 
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perature is obviously unique. For handling the system 
(84) and (85), we have found it easier to also define 
two temperatures at geometrical corners in order to 
have the same number of nodal heat fluxes and nodal 
temperatures. The equality of both temperatures at 
the nodes is then imposed as an additional constraint. 
Introducing equation (85) in equation (84), we obtain 

A(z)T~+B_FT ~4 = C(z, vpu,, W). (86) 

Assuming again that z, Vpu~ and W are known, this is 
a non-linear system in terms of the skeleton tem- 
peratures. It is solved by means of  the modified New- 
ton's method (also called Newton-Richardson [41]). 
A LU factorization of the Jacobian matrix is executed 
by means of an algorithm which is well suited for 
hollow matrices with irregular structure [42]. Having 
solved equation (86), we obtain the set of nodal tem- 
peratures along the skeleton. From these, it is then 
possible to calculate the nodal temperatures inside 
macro-elements by means of equation (83), while radi- 
ative heat fluxes can be retrieved from equation (85). 

6.2. Global algorithm : W imposed 
Let us first assume that, for a given crystal radius, 

the input power Wis imposed while the corresponding 
pulling rate is unknown. For  solving the system, we 
use a decoupled iterative procedure which is described 
as follows. Let z, and ~ut denote the corresponding 
values of z and vpu~ after iteration n ; typically, we will 
assume that v°ut vanishes while z0 corresponds to a 
horizontal interface. 

On this basis, we solve equation (86) and obtain a 
set of nodal temperatures T,~+I along the skeleton 
from which we calculate, with the help of equation 
(85), the nodal heat fluxes q~,+ ~. 

Next, we perform a decoupled calculation on the 
crystal-melt macro-element for calculating z,+ t and 
vp~t'"+ ~ . With that objective in mind, we solve the system 
of equations (74) and (78) with vput as an additional 
unknown and equation (80) as an additional con- 
straint; as boundary conditions, we use T~+~ along 
the melt-crucible interface, and q[,+ ~ along the surface 
of the melt and the wall of the crystal. The new values 
of z,+~ and "+ f rpu~ are then used for recalculating the 
matrices in equation (86). The iterations are pursued 
until convergence criteria for T s, z and t, pu~ are satisfied. 

The above decoupled iterative procedure converges 
in general, but can lead to unexpected and often un- 
realistic results. Indeed, it is found in practice as well 
as in theory that a slight modification of the power 
input can lead to important variations of the pulling 
rate for keeping the crystal diameter constant. Since 
the power input cannot be precisely measured on 
industrial pullers, one can easily obtain unrealistic 
huge values of the pulling rate. 

6.3. Global algorithm: vpu~ imposed 
In view of the above considerations, we found it 

much more efficient to impose the pulling rate, which 

is a control variable in industrial growth, and to cal- 
culate the necessary power input. The decoupled iter- 
ative procedure may be described as follows. Let z, 
and IV, denote the corresponding values of z and W 
after iteration n; we will assume for W0 a first guess 
based on a rough estimate. We solve equation (86) 
for T ~ and W, with equation (80) as an additional 
constraint, i.e. we select the power input such that the 
temperature at the tri-junction is precisely the melting 
temperature. We obtain T~+ t and q,~+ i and then per- 
form a decoupled calculation on the crystal-melt 
macro-element for calculating z,+ ~ while vpuz is fixed. 
The boundary conditions for the decoupled problem 
are the same as in Section 6.2, except that constraint 
(80) does not apply at this stage. The iterations are 
pursued until convergence criteria for T ~, z and W are 
satisfied. 

The stability properties of the algorithm where Vpu~ 
is imposed are remarkable, and definitely better than 
those found when W is imposed. In practical appli- 
cations, a relative accuracy of  1%o is obtained with 
six global iterations. The solution of equation (86) 
requires some four iterations for the first resolution 
and only one for the next iterations, while equations 
(74) and (78) require some four iterations. 

7. EVALUATION OF T H E R M A L  STRESSES 

Performing the fully coupled calculations of Section 
6, we are able to obtain an accurate temperature field 
and the shape of the liquid-solid interface during 
growth. We may thus calculate the stress field without 
any arbitrary simplifying assumptions on the shape 
of the crystal and the temperature field. A realistic 
calculation of the stress field would in turn require a 
continuum model taking into account the material 
properties of the crystal near the melting temperature. 
However, in view of the lack of material data at such 
high temperatures for the metals which we have con- 
sidered, we have been led to formulate the following 
hypotheses : 

(i) the crystal is an isotropic linearly elastic solid 
and the stress field is axisymmetric ; deformations are 
reversible and plasticity and creep are not taken into 
account ; 

(ii) the thermal field is decoupled from the stress 
field ; 

(iii) the material properties of the crystal (Young's 
modulus, Poisson's ratio, thermal expansion coefficient) 
are temperature independent ; 

(iv) the crystal is free of surface forces ; 
(v) the crystal is stress free under a uniform tem- 

perature field. 

The finite element calculation of thermal stresses 
under such conditions is straightforward (see, e.g. 
ref. [31]). A quantity of interest for evaluating the 
generation of dislocations is the Mises invariant which 
is defined as follows : 

SM ----- [ ( S , - S 2 ) 2 + ( S 2 - S 3 ) 2 + ( $ 3 - S 0 2 ]  ';2 (87) 
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where S,, S:  and $3 are the principal stresses. It 
is generally accepted that plastic deformations occur 
where Ssl reaches a critical value. 

8. RESULTS 

In the present section, we wish to demonstrate the 
efficiency of our numerical method through an analy- 
sis of two typical calculations. The first set of results 
corresponds to a Czochralski furnace for the growth 
of germanium crystals; we will show that, for cal- 
culating the growth of a crystal with fixed radius, it is 
much more efficient to impose the pulling rate than 
the power input. Our second example refers to the 
LEC growth of a gallium arsenide crystal ; we will find 
that the semi-transparent properties of the oxide layer 
have a major impact upon various aspects of the 
solution. 

8.1. Germanium 9rowth 
A typical furnace for growing germanium crystals 

is shown in Fig. 18 ; for the sake of clarity, a different 
scale is used in the radial and axial directions. In the 
present example, the crystal diameter is 10 cm, its 
length is 20 cm, and the total weight of metal is 30 kg. 
The meniscus near the tri-junction has little impact in 
the present calculation and has been neglected. The 
germanium melting temperature is 1211 K;  the other 
physical properties of the materials are given in Table 
1. 

It should be noted that some thermal properties, 
and the emissivity in particular, are highly dependent 
upon the grade and the surface state of the material. 
This explains why some values for the same material 
appear to be different for both germanium and gal- 
lium arsenide furnaces. 

The finite element mesh used for the calculations is 
shown on the left part of Fig. 19. The global mesh 
contains 965 biquadratic elements and 4317 nodes. 
The skeleton supports 792 nodes. A typical growth 
rate for the process is 3 cm h-~;  the corresponding 
isotherms are shown on the right part of Fig. 19. 
The crystal is slightly concave at the interface, with a 
deflection of 0.6 mm. The necessary power in the 
heater is 24.5 kW. To obtain the solution, we have 
performed six global iterations with adjustment of the 
power input ;  for each global iteration, we needed 
three inner iterations for locating the interface; the 
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FIG. 18. Draft of the germanium furnace used for the simu- 
lations (radial axis is dilated). 

convergence criterion was 10-6 K for the temperature 
field and 10 6 m for the position of the interface. 

An interesting problem is to determine the 
maximum value of the growth rate for a given process 
stage. In view of the high non-linearity of the problem, 
the pulling rate can only be increased in this case by 
a series of increments (the convergence of the iterative 
procedure could not be obtained otherwise). Let us 
examine in Fig. 20 the isotherms which have been 
obtained for values of Vpu~ equal respectively to 4.2, 
4.4 and 4,6 cm h ~ ; for this last value, the input power 
has decreased to 24.05 kW. From Fig. 20, we find that 
the maximum pulling rate is 4.4 cm h -  ~ since, at 4.6 
cm h -  ~, the melting point isotherm extends within the 
melt around the crystal; it is therefore impossible to 
maintain a crystal of  constant radius. Even at 4,4 cm 

Table 1. Thermal properties of the materials used in the germanium furnace 

Symbol in Conductivity 
Material Fig. 18 (W m- ~ K - t) Emissivity 

Solid germanium GS 25.0 0.55 
Liquid germanium GL 75.0 0.20 
Graphite G 60.0 0.81 
Steel S 30.0 0.30 
Insulating material F 0.07 - -  
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FIG. 19. Sketch of the germanium furnace with finite element 
mesh (left) and isotherms separated by steps of I0 K (right). 

h -  t, we find that the melting point isotherm is tangent 
to the surface o f  the melt; such a temperature dis- 
tribution could make it difficult to control the diam- 
eter o f  the crystal. Quite clearly, the effect o f  increasing 
the pulling rate is to produce a concavity o f  the crystal 
at the interface, with a deflection of  8.6 m m  at a 
growth rate of  4.4 cm h -  ~. To the contrary, a low 
pulling rate of  1.4 cm h -  i leads to a convex crystal, 
with a deflection of  6.9 mm,  as we may see in Fig. 21 ; 
the input power is then 25.0 kW. 
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J 

FIG. 21. Isotherms in the germanium furnace sepz~rated by 
steps of 10 K for an imposed growth rate of 1.4 cm h- '. 

It is clear that slight changes o f  the input power 
(between 24 and 25 kW) are associated with major 
modifications of  the pulling rate (between 4.6 and 1.4 
cm h -  ~) for keeping the crystal diameter constant ; it 
was therefore advisable to use the pulling rate rather 
than the power input as the control parameter for the 
calculations. Let us however analyse the case where 
the power input is imposed at a value o f  26 kW, with 
the result at 25 kW as a first guess. With such a jump 
in the input power, it is impossible to apply in a 
straightforward manner the method of  Section 6, 
because the initial guess lies too far from the solution. 
However, convergence can be obtained by applying a 
sub-relaxation algorithm, i.e. by imposing as con- 
straint on the interface. Instead of  equation (80), we 
use 

Tt.,,+, = (1 - ~ ) T m  +~tTt . ,  (88) 

where :t is a sub-relaxation parameter while n refers 
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FIG. 20. Isotherms separated by steps of 10 K in the germanium melt and crystal, for different growth 
rates : (a) 4.2 cm h- ~ ; (b) 4.4 cm h- z ; (c) 4.6 cm h- ~. 



Global modelling of heat transfer in crystal growth furnaces I S67 

- 1 2  

-tO 

- 8  

-6 

-4 

-2 

0 

2 

*m/s K mm 

.--rct = 3/4 
i 

) ~ / ~  = 1/2 

f f .=O 

/ 
tl 

1 2 3 0  

2 4 
1 2 0 0  

--.,a = 3/4 i 
I 
I 
) 

a = O  i 
i 

; 

= 1/2 

354 

3 5 2  

3 5 0  

348  

346 

344 

342 

3 4 0  

..,ct = 314 

ct=O 

n 

6 8 1 0 1 2 1 4 1 6 1 8  2 4 6 8 1 0 1 2 1 4 1 6 1 8  2 4 6 8 1 0 1 2 1 4 1 6 1  

a .  b .  ¢ .  

FIG. 22. Evolution of growth rate (a), temperature at the tri-junction (b) and position of the interface 
along the axis of symmetry (c) during the numerical iterations when the power input is imposed. 

to the nth global iteration. We found that an initial 
value of 0.75 for :t was suitable, in this case, for con- 
trolling the oscillatory behaviour of  the iterations. 
Figure 22 shows the evolution of  the pulling rate t'p~, 
(a), the imposed interface temperature T~ (b) (see 
equation (78)), and the axial interface position (c) dur- 
ing successive iterations. Having started the procedure 
~ith ~ = 0.75, we select the value 0 which immediately 
generates oscillations. A strong damping is observed 
once the value of  0.5 is selected. The final solution is 
shown in Fig. 23: the crystal becomes much more 
convex at the interface (with a deflection of  22 mm) 
while the pulling rate reaches a negatit'e value of - 2 . 2  
cm h -  ~. Since the power input is too high, we are actu- 
ally melting the crystal by pushing it into the melt: the 
natural issue would be to grow a crystal of  smaller 
radius. 

8.2. Gallium arsenide 9rowth 
As a second example, we will calculate the LEC 

growth of  a gallium arsenide crystal. The liquid boric 
oxide layer, which is used to prevent evaporat ion of 
the volatile component,  can be considered as trans- 
parent for a range of  wavelengths and opaque for the 
others. It has been shown in ref. [43] that transparency 
occurs for wavelengths lower than about 2.3 #m. 

As explained in Section 3.4, we will consider two 
different radiative enclosures, corresponding to both 
ranges of  wavelengths. For  the first enclosure, the 
function ;'A(T) defined by equations (2), (3) and (4) is 
given by 

7,,, = F(2.3 * 151 I) - F(0) = 0.4 (89) 

while for the second enclosure, we have 

7A: = F ( ~ ) - - F ( 2 . 3 .  1511) = 0.6. (90) 

We wish to investigate the effect of  the value of 7.~. 
upon the global solution. Recall that 7,. = 0 for u 
fully transparent medium, while ;.'v = 1 ~hen it is 
fully opaque. 

The physical properties adopted for the present 
simulation are given in Table 2. Note that the melting 
temperature of  gallium arsenide is 1511 K. The 
geometry of  the furnace and the finite element mesh 
used for the simulation are shown in Fig. 1. The crystal 
diameter is 6.4 cm (2.5 in.), the length is 5.2 cm and 
the total weight (melt and crystal) is 4 kg. 

A global view of the isotherms for the case ;'~, = 0.5 
and a pulling rate of  1 cm h -  ~ is given in Fig. 24. We 
note that, for the present problem, we have calculated 
the shape of  the meniscus for the surface of the melt 
and of the oxide layer. 

In Fig. 25, we show the isotherms and the contour 
lines of the Mises invariant Sx~ defined by equation 
(87), for values of 7,4: respectively equal to 0, 0.25, 
0.50, 0.75 and 1, and for the same pulling rate of 1 cm 
h -  t. It is clear that the degree of  opacity of  the oxide 
layer has a major impact upon the process. In particu- 
lar, in going from the transparent case at ;,'~, = 0 up 
to the opaque situation at 7a: = 1, we find that : 

(i) the crystal, which is initially concave at the inter- 
face, becomes convex ; 

Table 2. Thermal properties of the materials used in the gallium arsenide 
furnace 

Conductivity 
Material Symbol (W m- ~ K - ~) Emissivity 

Solid gallium arsenide Ga As S 7.2 0.36 
Liquid gallium arsenide Ga As L 17. l 0.36 
Graphite G 42.0 0.64 
Quartz Q 3.0 0.5 
Steel S 27.2 0.45 
Boric oxide B 1.7 0.5 
Graphite felt F 1.0 - -  
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FIG. 23. Isotherms in the germanium furnace separated by 
steps of 10 K for an imposed power input of 26 kW. 

(ii) the vertical temperature gradient in the melt 
decreases, while the horizontal temperature gradient 
on the surface of the melt increases ; 

(iii) the vertical temperature gradient in the oxide 
layer strongly increases ; 

FIG. 24. Isotherms in the LEC furnace for ?A 2 = 0.5 and a 
pulling rate of 1 cm h- ', separated by steps of 50 K. 

.... --1550 

a .  

1 3 0 0 ~  

~1550 ] 

13 1 3 0 0 - ~  

.......... 1 5 5 0  

¢ .  

_ _ ~ 1 5 5 0  

d .  

1 3 0 0 " ~  ~ 

14.1 

~ 1550 

e o  

Fig. 25. Isotherms separated by steps of 25 K, and iso-stress lines separated by steps of 2 MPa, for values 
Of 7A: equal to 1.0 (a), 0.75 (b), 0.5 (c), 0.25 (d) and 0.0 (e) and the same pulling rate of I cm h- ~. 
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FIG. 26. Evolution of the maximal stress (von Mises) (a), the power dissipated in the heater (b), the 
deflection of the interface (c) and the flux leaving the top of the boric oxide layer (d) as a function of the 

opacity coefficient 7A:- 

(iv) the stress level increases along the edge of  the 
crystal ; 

(v) the stress level along the axis of  symmetry 
decreases near the interface. 

The sensitivity of  the system is summarized in Fig. 
26, showing the dependence of  some important  output 
parameters upon YA:, i.e. the maximum value of  S~,  
the power input, the deflection of  the interface and 
the total heat flux leaving the upper surface of  the 
boric oxide layer. We note that all these parameters 
depend appreciably upon the radiative properties of  
the encapsulant. 

9. CONCLUSIONS 

The accurate prediction of  the shape of  the mel t -  
crystal interface and the temperature field within the 
crystal requires a global modelling of  heat transfer in 
the entire furnace. We have presented a self-contained 
model where, for any given geometry, the input par- 
ameters are limited to the coolant  temperature, the 
power input or the pulling rate, and the radius of  the 
crystal. Radiative exchanges are accurately calculated 
since viewed and hidden parts of  the enclosures are 
taken into account. The effect of  melt convection will 
be analysed in a further publication. 

We have demonstrated, on the basis of  simulations 
of  germanium and gallium arsenide growth, that our 
model is relevant for evaluating the sensitivity of the 

final product upon material and geometrical par- 
ameters. It is a valuable tool for growth control and 
furnace design. 

Acknowledgements--This research was supported in part by 
the Belgian [RSIA project No. 4866 and in part by the 
European ESPRIT project No. 1128. The authors wish to 
acknowledge the following companies : Metallurgie-Hobok- 
en-Overpelt, in Belgium, Wacker-Chemitronic, in West Ger- 
many, and the LEP (Laboratoire d'Electronique de Philips). 
in France, for a long standing and stimulating scientific col- 
laboration. 

REFERENCES 

I. N. Kobayashi, Heat transfer in Czochralski crystal 
growth. In Preparation and Properties of Solid State 
Materials (Edited by W. R. Wilcox), Vol 6. Marcel 
Dekker, New York (1981). 

2. J. J. Derby, L. N. Atherton, P. D. Thomas and R. A. 
Brown, Finite element methods for analysis of the 
dynamics and control of Czochralski crystal growth, J. 
Sci. Comput. 2, 297 (1987). 

3. J. J. Derby, R. A. Brown, F. T. Geyling, A. S. Jordan 
and G. A. Nikolakopoulou, Finite element analysis of a 
thermal-capillary model for liquid encapsulated Czo- 
chralski growth, J. Electrochem. Soc. 132, 470 (1985). 

4. J. J. Derby and R. A. Brown, On the quasi-steady-state 
assumption in modelling batchwise Czochralski growth. 
d. Co'stal Growth 87, 251 (1988). 

5. J.J. Derby and R. A. Brown, Thermal-capillary analysis 
of Czochralski and liquid encapsulated Czochralski crys- 
tal growth--I. Steady-state simulation, J, Co,stal 
Growth 74, 605 (I986). 

6. J. J. Derby and R. A. Brown, Thermal-capilla~' analysis 



1870 F. DUPRET et al. 

of Czochralski and liquid encapsulated Czochralski crys- 
tal growth--II.  Processing strategies, J. Crystal Growth 
75, 227 (1986). 

7. L. J. Atherton. J. J. Derby and R. A. Brown, Radiative 
heat exchange in Czochralski crystal growth, J. Crystal 
Growth 84, 57 (1987). 

8. R. K. Srivastava, P. A. Ramachandran and M. P. Dudu- 
kovic, Interface shape in Czochralski grown crystals: 
effect of conduction and radiation, J. Crystal Growth 73, 
487 (1985). 

9. S. Motakef and A. F. Witt, Thermoelastic analysis of 
GaAs in LEC growth configuration--I. Effect of liquid 
encapsulant on thermal processes, J. Crystal Growth 80, 
37 (1987). 

10. S. Motakef, Effect of natural convection and thermal 
transparency of liquid encapsulant on thermal stresses 
during LEC growth of GaAs, Int. J. Heat Mass Transfer 
30, 1487 (1987). 

11. S. Motakef, Thermoelastic analysis of GaAs in LEC 
growth configuration--II. Temporal evolution of the 
stress field, J. Crystal Growth 88, 34t (1988). 

12. P. Wouters, Simulation numrrique des 6changes ther- 
miques et application it la croissance des cristaux semi- 
conducteurs, Ph.D. Dissertation, Universit6 Catholique 
de Louvain, Belgium (1985). 

13. F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, 
Numerical calculation of the global heat transfer in a 
Czochralski furnace, J. Crystal Growth 79, 84 (1986). 

14. F. Dupret, P. Nicodrme and Y. Ryckmans, A numerical 
method for reducing stress level in GaAs crystals, J. 
Crystal Growth 97, 162 (1989). 

15. F. Dupret, Y. Ryckmans, P. Wouters and M. J. Crochet, 
Global finite element calculation of the Czochralski 
growth, Proc. Sixth b~t. Syrup. on Finite Element 
Methods in Flow Problems, Antibes, France, p. 267 (June 
1986). 

16. P. Nicod~me, F. Dupret and M. J. Crochet, Effect of 
geometrical parameters upon the LEC growth of GaAs 
crystals, Proc. 5th Int. Conf. on Semi-insulating I I I -V  
Materials (Edited by G. Grossman and L. Ledebo), p. 
465. Adam Hilger (June 1988). 

17. P. Nicodrme. F. Dupret, M. J. Crochet, J. P. Farges and 
G. Nagel, Numerical simulation of heat transfer in LEC 
growth of gallium arsenide, Proc. 5th Int. Conf. on Semi- 
insulating III~V Materials (Edited by G. Grossman and 
L. Ledebo), p. 471. Adam Hilger (June 1988). 

18. J. R. Howell, Application of Monte Carlo to heat trans- 
fer problems. In Advances in Heat Transfer (Edited by 
J. P. Hartnett and T. F. Irvine), Vol. 5 (1968). 

19. R. Siegel and J. Howell, Thermal Radiation Heat Trans- 
fer (2nd Edn). McGraw-Hill, New York (1981). 

20. B. Gebhart, Unified treatment for thermal radiation 
transfer processes--gray, diffuse radiators and absor- 
bers, Paper No. 57-A-34, ASME (1957). 

21. H. C. Hottel, Radiant-heat transmission. In Heat Trans- 
mission (Edited by W. H. McAdams), Chap. 4. McGraw- 
Hill, New York (1954). 

22. M. Jakob, Heat Transfer, Vol. II. Wiley, New York 
(1957). 

23. G. Poljak, Analysis of heat interchange by radiation 
between diffuse surfaces, Tech. Phys. USSR 1(5, 6), 555 
(1935). 

24. F. B. Hildedbrand, Methods o f  Applied Mathematics. 
Prentice-Hall, Englewood Cliffs, New Jersey (1952, 
1965). 

25. C. Garot and P. Gendre, Computation of view factors 
used in radiant energy exchanges in axisymmetric 
geometry. In Numerical Methods in Thern:al ProblFms. 
Pineridge Press, Swansea (1979). 

26. E. Biltig, Growth of monocrystals of germanium from 
an undercooled melt, Proc. R. Soc. London A235, 37 
(1956). 

27. P. Penning, Generation of imperfections in germanium 
crystals by thermal strain, Philips Res. Report 13, 79 
(1958). 

28. N. Kobayashi and T. lwaki, A thermoelastic analysis of 
the thermal stress produced in a semi-infinite cylindrical 
single crystal during the Czochralski growth, J. Crystal 
Growth 73, 96 (1985). 

29. A. S. Jordan, A. R. Caruso, A. R. Von Neida and J. W. 
Nielsen, A comparative study of thermal stress induced 
dislocation generation in pulled GaAs, lnP, and Si crys- 
tals, J. Appl. Phys. 52, 3331 (1981). 

30. A. S. Jordan, A. R. Caruso, A. R. Von Neida and J. W. 
Nielsen, A thermoelastic analysis of dislocation gen- 
eration in pulled GaAs crystals, Bell System Tech. J. 
59, 593 (1980). 

31. M. Duseaux, Temperature profile and thermal stress 
calculations in GaAs crystals growing from the melt, J. 
Crystal Growth 61, 576 (1983). 

32. C. E. Schvezov, I. V. Samarasekera and F. Weinberg, 
Mathematical modelling of the liquid encapsulated 
Czochralski growth of gallium arsenide--II. Stress 
model, J. Crystal Growth 84, 219 (1987). 

33. M. J. Crochet, P. J. Wouters, F. T. Geyling and A. S. 
Jordan, Finite element simulation of Czochralski bulk 
flow, J. Crystal Growth 65, 153 (1983). 

34. N. Kobayashi and T. Arizumi, The numerical analysis 
of the solid-liquid interface shape during the crystal 
growth by the Cz. method--I  and II, Jap. J. Appl. Phys. 
9, 361, 1255 (1970). 

35. P. Wouters, J. J. Van Schaftingen, M. J. Crochet and 
F. T. Geyling, Numerical simulation of the horizontal 
Bridgman growth--Il l .  Calculation of the interface, Int. 
J. Numer. Meth. Fluids 7, 131 (1987). 

36. H. M. Ettourney and R. A. Brown, Finite-element 
methods for steady solidification problems, J. Comput. 
Phys. 49, 118 (1983). 

37. D. R. Lynch, Unified approach to simulation on defor- 
ming elements with application to phase change prob- 
lems, J. Comput. Phys. 47, 387 (1982). 

38. W. Bardsley, F. C. Franck, G. W. Green and D. T. J. 
Hurle, The meniscus in Czochralski growth, J. Crystal 
Growth 23, 341 (1974). 

39. T. Surek and B. Chalmers, The direction of growth of 
the surface of a crystal in contact with its melt, J. Crystal 
Growth 29, I (1975). 

40. D. T. J. Hurle, Analytical representation of the shape of 
the meniscus in Czochralski growth, J. Crystal Growth 
63, 13 (1983). 

41. J. M. Oretga and W. C. Rheinboldt. Iterative solution 
of nonlinear equations in several variables. In Computer 
Science and Applied Mathematics. Academic Press, New 
York (1970). 

42. A. Georges and J. Liu, Computer Sohaion o f  Large 
Sparse Positire Definite Systems. Prentice-Hall, Engle- 
wood Cliffs, New Jersey (1981). 

43. A. G. Ostrogorsky, K. H. Yao and A. F. Witt, Infrared 
absorbance of B2Os at temperatures to 1250~C, J. Crystal 
Growth 84, 460 (1987). 



Global modellin G of heat transfer in cr,, st:t] gr,>,.,, th furnaces i ~71 

UN MODELE GLOBAL POUR CALCULER LES TRANSFERTS DE CHALEUR DANS 
LES FOURS DE TIRAGE DE CRISTAUX 

R~umg--Pour  pr6dire en cours de croissance le champ de temperature darts un cristal, ainsi que la forme 
de l'interface qui s6pare le bain de ce cristal, il faut d~terminer a~ec pr6cision les transferts de chaleur qui 
ont lieu dans le four tout entier. La r6solution de ce probI,~me est tr,3s complexe, car il y a lieu de calculer 
pr6cis~+ment :i la tois les ~changes radiatifs entre les diff~rentes surfaces et les transferts par conduction +i 
l'int&ieur des constituants du four. Les bchanges radiatifs sont &+'alu+3s sur base de l'hypoth~,se que la 
radiation est diffuse et se far  en surface tandis que Ies calculs se font par la mbthode de discr6tisation de 
Galerkin, fi l'aide d'un algorithme sp~cifique de calcul des vues el cachets. Le mod(:le a ~t~ ~tendu pour 
prendre en compte le caract6re semi-transparent de certains mat6riaux. La forme de l'interface liquide 
solide est une inconnue du probk}me, que l'on calcule en I'assimilant ~'t l'isotherrne de fusion. Des exemples 
de fours de tirage de germanium et d'ars+Sniure de Gallium sont analys6s, ce qui permet d'illustrer la 

puissance de la mathode 

EIN GLOBALES MODELL FOR DEN W,-{RMETR-\NSPORT IN OFEN FI~'R DIE 
K RISTALLZI~rCHTUNG 

Zusammenfassung--Eine quantitative Bcrcchnung des Temperaturfcldes und der Position dcr KristalI- 
obertliiche beim Wachstum erlbrdert einc genaue Kennmis dcr W/irmetransportvorgiinge im gcsamten Ofcn. 
Dicses Problem ist fiuBcrst komplex, da es einc exakte Bercchnung der Strahlung zwischcn den ~cr- 
schiedenen Oberllfichen und der Wiirmeleitung in den einzelnen Komponenten erfordert. Der StrahI- 
ungsw:'irmeaustausch wird unter Annahme xon diffusen grauen Oberfliichen berechnet. Hierzu ~ird tin 
besondercr Algorithmus zusammen mit einer Diskrctisicrung nuch Galcrkin ver~endet. Dicscs Model] 
~,,ird cr,acitcrt, um auch halbdurchliissige Materialicn einhezichcn zu k6unen. Dic Form der Iliissigkei'~,, 
Fcststoff-grenzl]:~ichc ist. eine Problcmvariable--sie ,aird in Form der Schmelzisothermen bcrcchnct. Die 
\\'irksamkeit ties \"erfahrens x~ird anhand '.on Beispiclen for Germanium- und Gallium-Arscnid-{3tep, 

~ezeigt. 

MO]IEJ'II4POBAHHE TEH.rIOHEPEHOCA liPid POCTE KPPICTA~fIOB B EMKOCTH 

.~OTAI~LIm----]~.rI~ KO~IHReCTBeHHOFO orlpe~eJieHH~ TerLROBOFO HO~1R H i'IO~IO~eHHR FpaHHHbl pa3ae.la 
pacrtnaa-rpncTa_~n B npouecce  p o c r a  8eo6xoJL~Mbl TOqHble naHHble no TemaonepeHocy ao Bce~ 
eMroc'rH. DTa 3anaqa  ~CbMa CJIOX<Ha, TaK gag c s3ana  c TOqHb/M pactleToM rlepeHoca H3oay,~eHna Mex.ay 
pa3,rlHqHblMl,! noaepxHoc'r:~Mx H TerLqonpoBO~-lOCTbrO SO BCeX ,~acrax CHC'reMbI. fly~lCTbI~ Tel'LqOO~MeH 
paccRI, ITblBaeTC~ a npn6.anxeam~ ]114q~y3Ho-cepblx noaepxHOXTe~l I4 C Hcno~b3OaaHHeM a.rlropH/Ma 
BIt2IJtlMOH H cKpbITO~ qacrefl, a TaKxe Me'ro,aa Fa.aepKrma. Mo21e,qb o6o6tt leHa Ha yqeT no.~ynpo3paqHblX 
MaTepHa...qOa. tl~opMa l'paHltUhl paaae.aa XletatOCTb--Taepaoe Te~qo ~IB,"I~IeTC~I l'lepeMeHHol,/ Be.rlHt.IIdHOH 
3TOH 3a,aa~H rl onpene~fleTc:q KaK rl3oTepMa rlAlaB.rleHttSL AHa.qrd3 npot leccoa  ,a~t apceHnlloa repMaHn~l [4 

ra.q.qH~ nO21Taep/lrLq ~(IDeKTHBHOCTb Me'ro..qa. 


